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Unveiling the Lithology of Vegetated Terrains 
in Remotely  Sensed Imagery 

Journal  Index  Descriptive Sentence: 

Lithologic  patterns within open  canopy  forests  are  revealed by selectively  suppressing 

image  contrasts  attributable  to  variations in vegetative  abundance. 

ABSTRACT 

“Forced  invariance” is a processing  method  that  can  subdue  the  expression of vegetation  and 

enhance  the  expression of the  underlying  lithology in remotely sensed imagery.  Data of each  spectral 

band are  altered in an  empirically  derived  manner so as to  produce a refined  band  that  largely  excludes 

contrasts  attributable  to  variations in vegetation  abundance. This is accomplished by ( 1 )  correcting  the 

data  for  the  effects of additive  path  radiance, (2) statistically  characterizing the relationship  between  the 

band  data  and a vegetation  index,  and (3) multiplying the  band  data as a function of the  index so that  the 

average  band  value is generally  invariant  across  all  index  values.  Comparison of original  and  processed 

color  composite  displays  confirms  the  method’s utility in unveiling  rock  patterns  consistent with nearby 

well-exposed  bedrock  and  alluvial  patterns  downslope,  especially in areas of open  canopy  vegetation 

such as in mixed  arid  and  semi-arid  terrains. 

INTRODUCTION 

In areas of  well exposed  rocks,  geological  investigations  readily  benefit  from the  analysis of remotely 

sensed imagery  for  the  differentiation of surficial  lithologic  materials.  Variations in the  abundance  and  type 

of iron-,  carbonate-,  and  hydroxyl-bearing  minerals  (among  others)  result in differentiable  spectra  for 

differing rock  types in the  reflectance  wavelengths, such as those  imaged by Landsat  Thematic  Mapper 
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(TM). However,  completely  barren  terrain is rare.  Even in most  arid  regions,  some  spatially  variable  amount 

of vegetation  covers  the  landscape  and  contributes its spectra  (and  shading) to the overall  terrain 

reflectance,  thereby  obscuring  the  spectra of the  underlying  lithology.  Siegal  and  Goetz (1 977) and 

Murphy and  Wadge (1994) have  found  that  differentiation  among  rocks  and  among  soils  can  be lost with 

vegetative  covers of  only 50 percent  or  less.  Clearly,  geological  investigations  can  benefit  from  image 

processing  methods  that  readily  reduce  the  expression of vegetation,  thereby  unveiling  lithologic 

patterns. This paper  presents  such  methods. 

Our approach, termed  “forced  invariance”,  subdues  the  expression of vegetation  without requiring 

any  knowledge of the lithologic  composition of the scene prior  to  or during the  de-vegetation  process. 

During our  processing,  we are not (yet) trying to purify a hydroxyl  signal  and  we are not (yet) trying to find 

the  andesite. We  do  not  require  field data, laboratory  analyses,  or  spectral  libraries.  Instead,  our  method 

simply removes  the  vegetation  component of the  signal in all  bands so that  the  resultant  refined  bands 

can  then be used  for  any of several  objectives. 

In contrast,  most  previous  works in or  related  to  vegetation  suppression  have  had as their  goal  the 

mapping of one  or  more  specified  lithologic  materials,  and  knowledge of the  spectral  characteristics of 

those  and  other  materials  has  been  required in order  to  complete  the  de-vegetation  process. End 

products  have  included  mineral  abundance  images,  classification  maps, or spectral  indices. In short, 

previous  works  have  generally  required  spectral  characterization of lithologic  materials  and/or  have 

produced  image  feature  products  rather  than  de-vegetated  bands. 

In the  following sections, we  provide  overviews of previously  reported  approaches  to  de-vegetation 

image  processing,  provide  and  describe  and  evaluate  examples of vegetation  suppression  via  forced 

invariance,  and  then  discuss  the  advantages  (and  limitations) of the  approach. 
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PREVIOUS  APPROACHES 

All approaches  to  de-vegetation  image  processing,  including  ours,  are  some  form of spectral unmixing 

in its broadest sense. Here  we  divide  the  various  approaches into two categories.  One  category we 

continue  to  call  “spectral unmixing”, to be  consistent with previous  literature.  The  other  category  includes 

previously  unnamed  methods  that  we  group with our  new  methods  under  the  generalized  concept of 

“forced  invariance”. 

Spectral unmixing generally  requires  detailed  knowledge of the  spectral  signatures of materials  known 

or  assumed  to  be  present in a  scene plus models of  how radiance  from subpixel scene constituents 

combine  into a single  overall  radiance  measure  (digital  number, DN) for  each  pixel in each  spectral  band. 

Spectral unmixing can be implemented  on a single  pixel,  and it can  detect a constituent  that is uniformly 

distributed  across a scene. 

Forced  invariance  requires no detailed  knowledge of the  spectral  signatures of materials  nor  any 

complex mixing models. It utilizes scene  statistics, so many  pixels  (usually a million  or  more) are required to 

implement this approach.  Furthermore, it requires  that  the  material  to  be suppressed  (vegetation, in this 

case) be  present in spatially  variable  amounts in order for that  material’s  radiometric  effects to be 

recognizable. 

Below,  we  briefly  describe  previous work in spectral unmixing and in forced  invariance . Interested 

readers  are  also  referred to papers by Adams  and  Adams (1 984) and  Cone1  and  Alley (1 984) for  additional 

approaches to  vegetation  suppression  that  are  interesting in concept but are of limited  applicability. 
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Spectral Unmixing 

Spectral unmixing is a procedure  that  determines  the  fractional  abundance of each  material within a 

mix of materials  that  can  best  account  for  the  observed  mixed  spectrum  at  each  pixel. It assumes  that  the 

overall  reflectance of each  pixel  can  be  modeled as a combination of the  reflectances of pure  materials. If 

the  spectral  influence of each  component is proportional to its abundance,  then the  spectral mixing is 

linear  and  can  be  modeled  for  each  band as shown in Equation 1. 

where  REFpixel is the  overall  reflectance of the  pixel,  and R and F are  the  reflectances  and  fractional 

abundances,  respectively, of the n various  subpixel  pure  materials  considered as possible  constituents of 

the  pixel.  Pure  materials are called  "endmembers"  because if all  pure  materials  can  be  characterized 

spectrally,  the  spectra of  all  mixed  image  pixels must occur  at  positions  intermediate to two or  more pure 

materials in n-dimensional  spectral space. Note  that  endmembers  and  their  spectral  properties must be 

determined  prior  to  the  application of these unmixing procedures.  Endmembers are usually  chosen  and 

spectrally  characterized by field  surveys  and  radiometric  analyses of samples,  comparisons of image 

spectral  signatures to  existing  spectral  libraries,  and/or  analyses of the  distribution of image  pixels in n- 

dimensional  spectral space. 

Generally, shade is modeled as another  linearly  mixed scene  component. Of course,  shade is not a 

material  object,  nor is shading  (variable  irradiance)  an  additive  component of terrain  radiance. Thus, 

shading  (and  shadows)  can  pose  significant  problems  for  spectral unmixing. 

The  literature  on  spectral unmixing is fairly  voluminous  and dates back  prior  to  the  launch of Landsat 1 

(Horwitz  et  al. , 1971). Smith  et  al. (1990) mentions  the  possibility of scaling  non-vegetative  endmembers 

to normalize  them in regard to variable  vegetation,  and  Mustard (1 993) illustrates  the  use of non- 

vegetative  endmembers  (not  bands) in color  composite  images.  However,  very  few  papers (e.g. Smith  et 



5 

al., 1988; Zamudio, 1992) even  mention  the  use of spectral unmixing for  the  production  of  imagery  that is 

vegetation-free but not  convolved  into  endmember  products. 

Bierwirth (1 990) provides  the  clearest  example of using spectral unmixing for  the  de-vegetation of 

image  bands  (similar  to  our  objective). In fact, this is the  only  example  that  we  could find where this 

objective  was stated, the  procedure  was  described,  and  the  results  were  well  illustrated. Using NS-001 

airborne  scanner  data,  Bierwirth  derived  abundance  images for each of several  materials. He  then 

recalculated  brightness  values in the  original  bands with both green  and dry vegetation  removed by (1) 

proportionally  rescaling the remaining  (lithologic)  fractional  abundances so that they would  total 100% and 

then (2) recalculating  pixel  values using Equation 1. Comparable  before-and-after  color  composite  images 

were  presented  that  show  apparent  suppression of at  least  the  green  vegetation  fraction. Dry vegetation 

is less  recognizable in the  “before”  image,  rendering  evaluations of its removal  more  difficult. A 

“vegetation  index”  ratio  image  (comparable  to TM ratio 4/3) of the  de-vegetated  bands  was  shown  to  have 

a residual  pattern  matching  that of hematite, as might be  expected of successful  results,  and it was  quite 

dissimilar  to  the  original  vegetation  index  image,  again  indicating success. 

Forced Invariance in Band  Ratios 

Methods  that  we  henceforth  call  “forced  invariance”  include  and  expand  upon a concept  derived by 

Elvidge and  Lyon (1985a). In simple  terms,  forced  invariance  calculates  images  that are invariant  relative to 

a specific  spectral  index.  Features  represented by that  spectral  index will not appear in the  resultant 

images  because  those  features will contribute  no  variance. 

Elvidge  and  Lyon, using field  spectra  and  airborne  scanner  imagery,  noted a near-linear  trend  among 

pixels of variable  vegetation  amount in plots  comparable  to TM band  ratio 5/7 versus TM band  ratio 4/3 

(1.65pm / 2.22pm  versus 0.83 pm / 0.66 pm, respectively). TM ratio 4/3 (a common  “vegetation  index”) is 

very  sensitive  to  vegetation  amount  and  relatively  insensitive to lithologic  variation. TM ratio 5/7 generally 

varies with the  abundance of hydroxyl-bearing  minerals (as well as carbonate  and  some  other  minerals). 
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However, TM 5/7 is also  variable with vegetation  amount  and  can  therefore  be  difficult  to  interpret.  The 

linear  trend in the  ratio-versus-ratio  plot  clearly  related  to  variable  vegetation  abundance.  Consequently 

Elvidge  and Lyon deduced  that  deviations  from  the  trend  line  should  be  invariable with vegetation  amount 

and  would  therefore  be  vegetation-free  measures of lithologic  variations in the 5/7 ratio. 

Fraser  and  Green (1987) describe  an  implementation of the  concept of Elvidge  and  Lyon  that uses no 

field data. Variation in vegetation  amount is assumed  to  be so statistically  dominant in the  image  data  that 

the first principal  component of the two ratios  closely  corresponds  to  the  vegetation  trend.  The  second 

principal  component  then  measures  lithologic  variations  independent of vegetation.  Fraser  and  Green 

express  caution  about this assumption,  and in our  experience,  we find this assumption  to  be  unreliable, 

particularly  for scenes that  have  localized  concentrations of vegetation but are  otherwise  very  barren,  such 

as in the arid  southwestern  United States. Our solution,  which  can  work  very  well, is to base the 

processing  statistics on only those  pixels  above  some  reasoned  threshold in the 4/3 ratio. This assures 

that  statistical  relationships  are  dominated by vegetated  pixels.  Such  thresholding is usually  needed 

whether using the  principal  components  approach  or our alternative  approach, as described  later. 

Evaluation of the  results of  Elvidge  and Lyon (1 985a)  and  Fraser  and  Green (1 987) lies  mainly in the 

comparison of their  de-vegetated 5/7 ratio  image to their 4/3 ratio  image.  Ideally, these two greyscale 

images  should  differ  greatly in appearance  and  should  have  statistical  correlation  near  zero.  Elvidge  and 

Lyon  provided  favorable  image  comparisons (but not  the  correlation measure),  and  also  provided 

confirming  evidence in the form  of  comparative  image  and  terrain  spectral  transects.  Fraser  and  Green 

provided  only  image  comparisons, but the  processed  image  distinctly  showed  successful  suppression  of 

at  least  the  most  prominent  vegetation  pattern. 



7 

FORCED INVARIANCE IN 

BAND RATIO COLOR COMPOSITE DISPLAYS 

Here  we  show  that  the  concept of Elvidge  and  Lyon  can  be  extended  to  additional  band  ratios,  and 

that  these  ratios  can  be  combined  into  color  composite  displays,  which  are  vastly  superior  to  greyscale 

images  for  the  visual  discrimination of  lithologic  materials.  Rowan  et  ai. (1992) similarly  transferred  the 

Elvidge  and  Lyon  concept  to  an  additional  band  ratio (TM 4/5) but not with the  objective of generating 

color  composite  imagery. 

Evaluations of the success of the  de-vegetation  process  itself  likewise  benefit from the use of color 

composite  displays.  Vegetation is commonly  distinctive in both spectral  appearance  and  geographic 

distribution  prior  to  the  processing. Its appearance  and  “disappearance”  (and the unveiling of distinctive 

lithologic  patterns) is far  more  convincing in three-dimensional  color space (millions of colors)  than  on a 

one-dimensional  greyscale (256 levels of grey). 

The  image data used  here is a Landsat TM scene of south-central  Nevada, 180 km north-northwest of 

Las  Vegas,  covering  parts of  Lincoln  and Nye Counties, including the  community of Rachel  (Figure 1). 

(Landsat  Path 40, Row 34; Latitude 37* 40’N, Longitude 1 1 9  40’W; taken  on 4 November  1986.)  The 

region is arid  to  semi-arid.  Valleys  consist of broad  alluvial  fans  having  low  density  sagebrush  and dry lakes 

having little, if any,  vegetation.  The  mountain  ranges  are mostly rugged  and  have  vegetation  densities 

that  generally  increase with elevation,  climaxing in a juniper-pinyon  woodland  at  the  higher  elevations 

(Figure  2).  The  geologic  setting  includes  plutonic  and  volcanic  rocks, as well as carbonates  and  other 

sedimentary  rocks,  and  has  been  described by Tschanz  and  Pampeyan (1970) and by Howard (1978). 

This site  was  chosen for testing  and  demonstration  purposes  because its lithology is diverse  and 

spectrally  distinct,  such  that  de-vegetation  procedures  should  reveal  terrain  having a clear  lithologic 

pattern. 
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Our computational  approach  differs  from  that of Fraser  and  Green. It can  be  equivalent in result, but it 

uses  statistics  that  more  directly  target  the  objective. First, we take  the  logarithm of  all  ratios  (including  the 

vegetation index) so as to  linearize  any  exponential  relationships  that  may  exist  among  them  (relationships 

that  were  already  linear will remain  linear).  Then,  instead of fitting principal  components  to  the  vegetation 

index (TM ratio 4/3) and the ratio of interest, we  iteratively  perform a weighted  linear mixing of those two 

ratios until we find the  result  that  has  minimal  correlation with the  vegetation  index. In other  words, if the 

ratio  image of interest is positively  correlated with vegetation  we  “subtract  some  vegetation  image”  from it. 

If the  ratio  image of interest is negatively  correlated with vegetation  we  “add  some  vegetation  image”  to  it. 

The  concept is that  an  image  that  has  no  correlation with vegetation  abundance is generally  invariant with 

vegetation  abundance  and is therefore  unlikely to significantly  depict  vegetation. 

Figures 3A and 3A’ depict  “before”  and  “after”  ratio-based  de-vegetation  processing  for  our  test 

scene. Landsat TM band  ratios 3/1, 5/4, and 5/7 are depicted in blue,  green,  and red, respectively.  (Ratio 

3/1 generally  varies with ferric iron, ratio 5/4 generally  varies with ferrous  iron,  and  ratio 517 generally  varies 

with hydroxyl-bearing  and  carbonate  minerals.)  Each  ratio  has  been  multiplicatively  merged with band 4 in 

order  to return topographic  shading  (and  some  albedo  information)  to  the scene achromatically. This 

helps  facilitate  recognition of physiographic  context  and  geologic  structure. This method of merging 

three  colored  (chromatic)  components  and  an  uncolored  (achromatic)  component is termed  “four 

components  processing”  and is described by Crippen (1 988, 1989). Band 4 is used  here as the  

achromatic  component  because it is the  band  having  the  least  correlation with the  vegetation  index. 

(Natural  vegetation  appears  generally  darker  than  barren  rocks in all  bands  for this scene, but it is least  dark 

in band 4). Band 4 therefore  returns  shading to the  scene  while only minimally  returning  the  depiction of 

vegetation,  and  even  then  only as subtle  brightness  patterns. 

In the  “before”  image  (Figure 3A), vegetation  appears  reddish-magenta. It is relatively bright in red 

(TM 5/7), dark in green (TM 5/4), and  neutral in blue (TM 3/1). This is also  evident in Figure 4, which  plots 

each  ratio  versus  the  vegetation  index (TM 4/3). Clearly, TM 5/7 values  increase, TM 5/4 values  decrease, 
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and TM 311 values  are  generally  invariable with increasing  vegetation  amount as measured by the 

vegetation index. 

In the  “after“  image  (Figure 3A’), vegetation in the  mountains  has  largely  vanished  because  ratio 

values  are  generally  invariable with variable  vegetation  amount.  Note  that the processing  has  not just 

masked  the  vegetation  pattern. It has  revealed  the  lithologic  pattern  where it had  previously  been 

obscured by the  vegetation.  Lithologic  features  appear  continuous  between  naturally  exposed  and 

“newly  exposed” areas. Also,  de-vegetated  source  rocks in the  mountains  have the  same spectral 

appearance as the  detritus  that  has  washed  out of the  mountains to the  naturally  exposed  alluvial  fans. 

De-vegetation  via  forced  invariance is very  effective  on this scene. 

Let us reiterate the concept of our  approach  to  de-vegetating  band  ratios. We linearly  and  iteratively 

mix each  selected  band  ratio with the vegetation  index until the  result  has  zero  correlation with the 

vegetation  index (using logarithms of the ratio  and  index). We  do this under the assumption  that  images 

that  have  no  correlation with the  vegetation  index will be  generally  invariable with vegetation  amount  and 

are  therefore  unlikely  to  depict  vegetation. This ‘‘forced  invariance”  approach appears to work very well. 

Might a similar  approach be applicable  not just to  band  ratios, but to  bands? 

FORCED INVARIANCE IN BAND IMAGERY 

Concepts  and  Deriving  the  Procedure 

In order  to  design  an  algorithm  to  make  vegetation  “disappear” in image  bands,  we  need a 

fundamental  understanding of  how and why vegetation  originally  appears in a band  image. This 

discussion will expand  upon  and  serve  to  clarify  concepts  presented in previous  sections. 
.- w - 
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Detection  and  identification of any  feature in an  image  relies  upon  recognition of its color, size,  shape, 

texture,  pattern,  height,  shadow,  and/or  spatial  relationship  to  other  features (Estes et  at., 1983). 

Ultimately,  however,  all of these  feature  characteristics  require contrasts in tone. I f  an  image  loses  all 

contrast, all features in it cease to  be seen  because all of these  feature  characteristics cease to  exist. 

It follows  then,  at  least in concept,  that our task  becomes  simple.  Question: How can  we  selectively 

make  only  vegetation  disappear?  Answer:  Selectively  eliminate  only its contrast. Our method is based on 

this postulation. 

In a vegetated scene, every  pixel in every  band  has a DN value. If that same  scene had  no  vegetation 

cover, every pixel in every  band  would still have  some DN value. This is obvious, but it serves to remind us 

that  the  only  differences  between  vegetated  and  de-vegetated scenes are  increases or decreases of 

some of the DN values of  individual  pixels in individual  bands.  Implementing the correct  changes will force 

the  vegetation  to  disappear. Thus, fundamentally, in order  to  de-vegetate a scene we must develop 

some  logic as to  how  much  to  increase  or  decrease (if any)  the DN value  for  each  pixel in each  band. 

Intuitively, in simple  terms, we  need  to know two things: 

(1) What  amount of vegetation is there in each  pixel? 

(2) How  strongly  and in what  manner  (darkening or brightening)  does  any  particular  amount of 

vegetation  affect  pixel  radiance in each  band? 

Fortunately, a calibrated  physical  measure of  item ( l ) ,  the  amount of vegetation (e.g.  biomass, leaf area, or 

land  cover percentage), is not  needed.  Instead,  we simply need  some  relative  measure of the 

prominence of vegetation in terms of its radiometric  impact. An uncalibrated  vegetation  index serves this 



purpose. The ratio of near-infrared (0.76-0.90 pm) radiance  versus  red (0.63-0.69 pm) radiance (e.g. 

Landsat TM band  ratio 4/3) is effective as a vegetation  index  because it varies  much  more with vegetation 

vitality  (abundance  and  vigor)  than with variations in lithologic  variables (e.g. iron  concentrations). Thus, a 

vegetation index tells us, in an  appropriate  relative  manner,  the  “amount of vegetation” in each  pixel. 

Item (2), how  vegetation  affects  pixel  radiance in each  band, is certainly a complicated  issue  (and will 

be addressed  further in the Discussion  section  below).  However,  the  image  data  itself  can  tell us the 

general  relationship  between  vegetation  amount  and  band  darkening  or brightening. This relationship is 

evident in plots of band DN values  versus  the  vegetation  index  (e.g.  Figure 5,  top). 

Forced  invariance uses the  assumption  that  the  general  relationship  between  vegetation  amount  and 

band  darkening  or brightening is applicable  to  all  pixels. This will be  an  erroneous  assumption  for  some 

pixels  and  may be an  inadequate  assumption  for  some scenes. However, it is an  adequate  and  useful 

assumption  for  at  least  some scenes, as will be  self-evident in our  results,  and it leads  to a simple  de- 

vegetation  procedure. 

Remember  that our method is based  on  the  postulation  that  eliminating  image  contrasts  related  to 

vegetation will eliminate  the  appearance of vegetation in the scene. What this means is that  we seek to 

alter the image  data so that  variable  amounts of vegetation will not (in general)  affect  pixel DN values. 

I f  we assume: 

(1 )  that  the  distribution of vegetation  across  the  terrain is independent of  rock  type (i.e.  geobotanical 

relationships, if any,  do  not  significantly  influence  the  band DN versus  vegetation  index 

relationships), 
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(2) that  rock  albedo is not by chance  substantially  correlated with vegetation  amount (e.g. bright rocks 

and dense vegetation  do  not  both  occur  together  at high elevations  for  unrelated reasons,  such 

as erosional  resistivity  and  air  temperature),  and 

(3) that the distribution of vegetation is not strongly related  to  terrain  shading  and  shadowing (at the 

particular s u n  azimuth  and  altitude  present during image  acquisition), 

then we  should  expect  that DN averages  (and,  ideally, DN variances)  should  not  vary  significantly with the 

vegetation  index  after  completion of the  de-vegetation  process. 

So, how  do  we change  original  data  distributions (as seen in Figure 5, top)  to  “de-vegetated’’ 

(vegetation  invariable)  data  distributions (as seen in Figure 5, bottom)?  The  following two reasonable 

constraints  point  the  way  to a simple  procedure. 

(1) The  mean DN value  should  become  reasonably  uniform across all  vegetation  index  values. 

(2) DN values  corresponding  to  dark  pixels  (pixels of zero  terrain  radiance,  whether  present or not) 

should  remain  (or  become)  reasonably  uniform  across  all  vegetation  index  values. 

Constraint (1)  is the primary  objective  for  the  removal of image  contrasts  related  to  vegetation  amount. 

Constrain (2) is necessary  for  maintaining  radiometric  integrity. 

The procedure thus becomes  evident.  Dark  pixel DN values should be  determined  and set to zero  via 

subtraction,  and  then  all  pixels  at  each  vegetation  index  level  should  be  multiplied by a factor  that sets 

their  mean  to a target DN value.  (The  factors  vary with the  vegetation  index, but the  target DN does not.) 

In other  words,  apply  dark  pixel  corrections,  then multiply all  pixels in each  vegetation  index  column  of 
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Figure 5,  top  row, by an  amount  that  flattens  the  data trend line so that it appears as in Figure 5, bottom 

row.  Note  that  the  multiplicative step will not  alter  the  corrected  dark  pixels because  zero  times  anything is 

still zero. 

Dark pixel corrections  suppress  atmospheric  path  radiance  (the  sensor  observed  brightness  of  the 

atmosphere) plus the  sensor  calibration  offset of each  band. In other  words, they are  the DN values  for 

zero-reflectance  terrain  (whether or not it exists in a  scene). Especially in rugged  terrain,  they are required 

in order to exclude  terrain  shading  distortions  from  band  ratios,  including  the  vegetation  index  image  used 

in forced  invariance (see Crippen,  1988a,  for  an  illustration of this effect). Thus well  chosen  dark  pixel 

corrections,  commonly  called  “atmospheric  corrections”,  can be critical  at two stages of the  de-vegetation 

process.  (Dark  pixel  values  for  the  Rachel,  Nevada, TM scene  are 41, 10,6, 1 , 0, and -1 for  bands 1,2,3,  

4, 5 ,  and 7, respectively.) 

Procedure  Summary 

In simple  terms,  these are the steps used  to  de-vegetate  bands of a multispectral scene via  forced 

invariance: 

(1) Estimate  dark  Dixel DN values for each  band  and  subtract them from all  pixels  of  each  band  imaae. 

(Crippen (1 987) describes  various  methods of estimating  dark  pixel  values.)  Use  the  resultant  band 

images in all subsequent steps, including  calculation of the  vegetation  index. 

(2) Calculate a veaetation  index. A simple  ratio of the near  infrared  band  versus  the  red  band (e.9. Landsat 

TM band  ratio 4/3) serves this purpose.  The  vegetation  index  image  may  be scaled,  quantized,  and 

stored as integers from 0 to 255, with minor high and low saturation.  (Scaling  information  can  be 

discarded,  and  the  choice  of a log  ratio  index  versus a simple  ratio  index is inconsequential to the V3SUltS.) 
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Then  for em band (as described in graphical  terms): 

(3) Plot DN vahes versus v e w o n  mdex  values 
. .  . In other  words,  gather  statistics  relating  band DN 

values to vegetation index values, as graphically  represented in Figure 5, top row. 

(4) Fit a smooth best-fit curve  to  the plot. Essentially, this means finding the  average DN value  at  each 

scaled  and  quantized  vegetation index value (or group of values), but then  also  smoothing  the  results 

over  several  quantized  vegetation  index  values. 

(5) Multiolicativelv  flatten the curve  and  draa  all  the  Dixels  alona with it.  Select a target  average DN value 

(e.g. 64) and multiply all  pixels  at  each  vegetation  index  level by an  amount  that  shifts  the  curve  to  that 

target. In other  words,  for  each  vegetation  index  level, multiply all  pixels  at  that  vegetation  level by the 

target DN divided by the curve  DN. Saturate  any  pixels  that  exceed  the upper quantization limit (e.g. 255). 

Results 

Figures 38 and 38’ demonstrate  band  de-vegetation by forced  invariance  for  our  test scene. Landsat 

TM bands 1 ,  4, and 7 are displayed in blue,  green,  and  red,  respectively. As is typical,  vegetation  appears 

green with this band  and  color  assignment  combination  after  the scene is contrast  stretched  and  color 

balanced.  After  forced  invariance,  the  vegetation is suppressed  and  the  lithologic  pattern is more  clearly 

revealed.  Additionally,  the  “after”  image  benefits from contrast  stretching  and  color  balancing  being 

applied only to  the  lithologic  features. 

In general,  carbonate  rocks  appear  blue,  granitic  rocks  appear  green,  and  volcanic  rocks  appear pink in 

Figure 38’. Note  that as with the  band  ratio  example,  there is good continuity  between  naturally  exposed 
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rocks  and  rocks  revealed by the  processing, as well as between  revealed  source  rocks  and  naturally 

exposed  rocks  downstream  on  the  alluvial  fans. 

DISCUSSION: THE  METHOD 

Dark Pixel  Corrections 

Why are dark  pixel  corrections  needed? Firstly, they are  needed  to  produce a useful  vegetation  index 

image. The vegetation  index is a band  ratio  intended  to  represent  the  ratio of terrain  reflectances. 

However,  radiance  recorded by a  sensor includes  several  terms  other  than  terrain  reflectance.  Some  are 

multiplicative terms (atmospheric  transmissivity, sensor  gain,  topographic  shading)  and  some are additive 

terms  (atmospheric  path  radiance  and  sensor  calibration  offset). If the  additive  terms  can  be  estimated  and 

removed,  then  ratioing will reduce  the  non-reflectance  multiplicative  terms of recorded  radiance  to a 

constant (they “divide  out”) as long as they are invariable  or  proportionally  variable across the scene 

between  the  ratioed  bands.  Dark  pixel  values  correspond  to  the sum of the  additive  terms of recorded 

radiance  (those  that  do not  “divide  out”)  and  therefore  represent  the DN corrections  needed  to  allow  band 

ratioing  to  produce  images  that  are  representative of the  ratios of terrain  reflectance. 

Secondly,  dark  pixel  corrections  are  needed  to  maintain  radiometric  fidelity of the  de-vegetated 

bands.  Pixel DNs get  multiplied by a variable  factor in the  de-vegetation  process.  Clearly,  pixels of zero 

terrain  radiance  (whether  real  or  theoretical)  should  retain a uniform DN value.  Zero is the only DN value 

that  remains  invariable  when  multiplied by a range of numbers.  Dark  pixel  corrections  (estimating  and 

subtracting  dark  pixel DNs  from  all  pixels)  therefore  helps to maintain  the  radiometric  fidelity of the  de- 

vegetated  images. 
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The  Vegetation  Index 

We use a simple ratio of the  near  infrared (NIR) band  versus  the  visible  red  band  for a vegetation index. 

Such a ratio  has  long  been  recognized as a general  measure of vegetation  abundance  (Jordan, 1969). 

Visible red light is strongly  absorbed by chlorophyll,  while  near-infrared  insolation is highly reflected by 

plant  leaves  because of internal  leaf  scattering  and  no  absorption (Knipling, 1970). No such  extreme 

reflectance/absorption  differences  occur  for  lithic  materials  over these  wavelengths,  and  NIR/Red  ratios 

for  rocks are far  lower  than  those  for  foliage. In fact,  NIR/Red  ratios  for  foliage are distant  outliers  relative  to 

the range of NIR/Red ratios  observed  for  rocks.  Consequently,  variations in NlWRed  ratios in a  scene 

having  vegetation are dominated by variations in the  abundance of that  vegetation. 

Band  ratios  have been shown  to  be  imperfect  measures of vegetative  abundance  for  plants  growing 

upon  rocks  and  soils of variable  albedos  (Elvidge  and  Lyon, 1985b), and  alternative  vegetation  indices 

have  been  proposed,  primarily  for use in agricultural  research  (e.9.  Richardson  and  Wiegand,  1977). 

However,  when  used with dark  pixel  corrections,  band  ratios  should  be  superior  to  those  alternatives in 

suppressing  topographic  shading  effects,  which is the  greater  concern  at  many  sites of geologic  interest. 

Fitting,  Smoothing,  and  Flattening  the  Curve 

Plots of band  data versus a vegetation  index,  such as those in Figure 5, top,  can  have  substantial 

irregularities.  Pixels are not  distributed  evenly  across  all  index  values  because (1) pixels  at  each 

vegetation  amount  are  unlikely  to  be  present in equal  numbers in a  scene, and (2) some  ratio  values  are 

impossible  for  shaded pixels (and  other  pixels)  having low integer DN values (e.9. 131 / 107 = 1.2243, 

but smaller  integers  cannot  produce  the  same  ratio  value), as is evident in the  data  distribution  patterns of 

Figures 4 and 5. Some  index  values will therefore  have (1) an  insufficient  statistical  sampling  and/or (2) a 

bias  toward high DN values.  These  are  issues to consider  when fitting a curve  to these  data  plots. 
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Clearly,  we  cannot simply define  the  curve by “connecting  the  dots”,  where  each  dot is the  average 

DN at  each  quantized  index  value.  Some  smoothing of the  curve is needed.  Various spline fitting 

routines  may  be  applicable.  However,  we  have found that  boxfiltering  the  data with median  and  mean 

filters  readily  provides a fitted  curve  that  appears  reasonable. We would expect a  “reasonable”  curve  to be 

smooth  and  to  not  have  more  than  one  change of direction  (brightening or darkening)  over  the  range of 

vegetation  index  values. 

In the  example  shown  here  (Figure 5, top), DN values  for  each  band  continuously decrease with 

increasing  vegetation  index  value. This is likely  due  to  shadowing of the  ground by plants  being  the 

dominant  radiometric  effect of increasing  vegetation  amount. In some scenes, DN values decrease and 

then  increase with increasing  vegetation  index  values,  particularly in TM band 4. This probably  indicates 

that  vegetation  reflectance is generally  greater  than  lithologic  reflectance in that  band, but shadowing is 

still the  dominant  effect (resulting in net  pixel  darkening) until vegetation  grows  thick  enough  to  close its 

canopy  and  hide  the  shadows,  at  which  point  reflectance  dominates  (resulting in net  pixel  brightening). 

Other  possibilities  may  also  occur. 

The  filters  we  have  used  were  chosen  inferentially.  We  have  made  no  attempts  to  optimize  them 

because  they  appear to work  well on a variety of scenes. First we tabulate the  band DN values by 

vegetation  index  level (a 256x256 array).  Then  we find the  median of  all data  (individual  pixels)  occurring 

within 5 quantization  levels of each  vegetation  index  level (0-255) and  store  those  medians as a 256- 

member  array.  Next  we  filter  that  one-dimensional  array  several  times  to  smooth  it. First we  sequentially 

use  median  boxfilters  of  half-widths 1 1 ,  7, 3, and 1 .  Then  we  sequentially  use  mean  boxfilters of half- 

widths 1 ,  5, and 9. The  median  filters  tend  to  avoid  outliers,  while  the  mean  filters  tend to smooth  stair- 

steps. The  filters are not allowed  to  reflect  nor  truncate  against  the  ends of the  array,  which  could  distort 

the  curve  trends  there.  The  larger  filters  smooth  more,  and  the  smaller  filters  reach  closer to the  array 

ends.  Because  the  array  ends may  be  insufficiently  smoothed,  we plot and  observe  the  curve  and  then 

allow  an  option to replace  the  ends with user  selected  extrapolations from the  adjoining  curve  segments. 
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The  curve  represents  the  general  relationship  between  vegetation  amount  and  pixel  darkening  or 

brightening. I f  it were  flat, it would  indicate  that  vegetation  contributes no contrast  to  the  band  image. By 

flattening it, we seek to  remove  image  contrast  attributable to vegetation. As previously  indicated,  the 

flattening  procedure is simple.  Choose a target  average DN value for the  entire  band,  then multiply all 

pixels  at  each  vegetation  index  value as follows: 

Pixel DNn, = Pixel  DNodginal X (Target DN / Curve  DNveg  index ) Eq. 2 

This flattens  the  curve  and  multiplicatively shifts all  pixels  at  each  vegetation  index  level by a constant 

factor.  Note  that  the DN change  (DNnew - DNoriginal) is proportional to the  original DN for  each  pixel  at 

any  given index level. 

Problematic  Image  Features:  Radiometric  Outliers 

A s  noted  previously,  our  procedures  assume  that  geobotanical,  physiographic,  and  coincidental 

relationships  between  vegetation  distribution  and  non-vegetative  terrain  radiance  do  not  greatly  affect  the 

image  statistics used in forced  invariance.  Clearly, this assumption  can run into  problems.  Fortunately, 

where these problems are most severe,  there is often a simple solution. 

For  example,  playas (dry lakes)  are  present in the  Landsat TM scene we  show  here.  The  playas are 

barren of vegetation  and  consequently  have  the  lowest  vegetation  index  values.  Meanwhile,  they 

typically  have highly anomalous DN values in most  bands. As radiometric  outliers,  they are incongruous 

with the  general  relationship  between  terrain  brightness  and  vegetation  amount  that  we  seek  from  the 

image  statistics  and are therefore  problematic. 

The  solution is to  exclude  the  playas  from  the  compiled  statistics. This is accomplished by creating a 

binary  mask  that  isolates  the  playa  pixels,  usually by thresholding  and  visually  editing  the  band in which  the 
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playas  are  most highly anomalous.  The  mask is then  used to nullify the  playa pixels during compilations  of 

image  statistics.  Similar  procedures  can  be  used  to  mask  other  radiometric  outliers,  such as water,  clouds, 

snow, and (as we  have found in this scene) cultivated  vegetation. 

Forced  invariance  based  upon  masked-image  statistics is then  applied  to  the  entire  image,  including 

any  playa,  water,  cloud,  snow,  and  crop  pixels.  The  pixels  that  were  excluded  from  the  statistics  are 

brightened or darkened  an  amount  that is proportionally  equal  to  that for other  pixels  having  similar  index 

values. 

Notes on the  Radiometric  Outliers of This  Scene 

The  cultivated  vegetation of our  test scene lies just west of the  community of Rachel,  Nevada,  and 

appears as pivot-irrigated  circular  fields  (of  alfalfa).  Note  that  pixels  for  these  fields  are  anomalously bright 

in all  bands  at  any  given  vegetation  index  level as compared to natural  vegetation  (Figure 5). This is due to 

differences in plant  shadowing  and  reflectance as compared  to  the  natural  vegetation.  These  crops  were 

masked while deriving  image  statistics  and  are  over  brightened  (Figures 38’ and 5) by band  processing 

designed  specifically  to suppress natural  vegetation. 

Playas  and  cultivated  vegetation  (“crops”)  appear  differently  between  the  ‘before’  and  ‘after’  ratio- 

processed  imagery (Figures 3 A  and 3A’, respectively),  however this is in part due to  the  display 

processing  and  not just the  de-vegetation  processing.  Remember  that  these  features  were  excluded 

from statistics  used  for  the  de-vegetation  process  yet  were  subject to processing  based  upon  those 

statistics. Also remember  that these band  ratio  color  composites are multiplicatively  merged with band 4, 

which  generally  improves  image  interpretability. In the  ‘before’  ratio  composite  prior  to  merger with band 4 

(not  shown),  both  the  playas  and  the  crops  appear  reddish  magenta as expected.  However,  playas  are 

extremely  and  anomalously bright in band 4 and  become  the  brightest  features in the scene after  the 

merger with band 4. Consequently,  the  playas  become  saturated  (truncated  at DN=255) in all channels 
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after  contrast  stretching  optimized for all  other  features. In the  ‘after’  ratio  composite  prior to merger with 

band 4 (not  shown),  playas  appear reddish magenta, thus retaining  their  chromaticity (as we  would desire 

for  exposed  lithology).  However,  crops are not adequately  suppressed by statistics  based  specifically  on 

natural  vegetation,  and  they  remain  anomalously high in band  ratio 5/7, become  anomalously high in band 

ratio 5/4, and  remain  fairly  neutral in band  ratio 3/1. The  result is that  crops  become a bright and 

unsaturated  yellow  (“unsaturated” in the  chromatic sense) prior  to  merger with band 4, and  remain  brighter 

than  even  the  playas  after  merger with band 4, allowing  the  playas  to  retain  their  chromaticity  (reddish 

magenta)  after  contrast  stretching of the  final  display. 

DISCUSSION:  GENERAL CONSIDERATIONS 

Vegetation’s  Effect o n  Pixel  Brightness 

The  effects of vegetation  on  pixel  brightness  can  be  complicated  and  diverse  on a pixel by pixel basis. 

In general, in each  band,  vegetative  matter will have a differing  reflectance  than its lithologic  host, plus it 

will cast shadows  that  darken  parts of the  pixel  that it does  not  cover.  Differing species will have  differing 

reflectance  spectra  and will project  differing  shadow  lengths  and  depths.  Self  shadowing will also  vary 

among species. 

Where  vegetation is tall,  narrow,  and sparse, the  shadowing  effect  may  dominate,  especially with low 

s u n  angles,  because  a  plant’s  shadow may  cover a greater  area of the  pixel  than  the  plant  itself.  The 

shadow will always  darken  the  pixel  regardless of the  reflectance  properties of the  soil  or  bedrock. 

Where  vegetation is short but dense, or sun  angles  are high, cast  shadows  may  be  small  relative  to  the 

area  covered by the  plant  itself. In that case, reflectance  contrasts  may  be  the  dominant  effect  and  pixels 

may  brighten in some  bands with increasing  vegetation  amount,  particularly  over  dark  substrate.  Indeed, 

equivalent types and  amounts of vegetation  may  darken a bright substrate  and  brighten a dark substrate. 
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There will always  be  some  range of reflectances  for  lithologic  materials, as well as some  diversity of 

radiometric  effects  imposed by the  vegetation. On a pixel by pixel basis,  these  effects  are not fully 

determinable  based on image  data  alone. Our simplifying assumption  models  the  effect of each  amount 

of vegetation in each  band as a multiplicative  constant  (indicated by a point on a best-fit  curve). I f  a given 

amount of vegetation  can  darken bright rocks,  and  that  same  amount of vegetation  can brighten dark 

rocks,  clearly  our  model  has  shortcomings.  The  model will likely  work  best  where  shadowing is the 

dominant  effect of vegetation  since  shadows  always  darken  rocks of any  brightness.  That  our  simple 

model is adequate and useful for  at  least  some scenes is well  demonstrated by the results  shown  here in 

our  example. 

The Data  Trend  Concept 

We use  the  term  ”forced  invariance”  because  we  are  forcing  the  processed  image  to  be  invariable with 

vegetation  amount  (i.e.,  normalized  relative  to  vegetation).  The  ratio-versus-ratio  procedures of Elvidge 

and  Lyon (1 985a)  and  Fraser  and  Green (1 987) are  a form of forced  invariance. If the  trend of variable 

vegetation  amount is approximately  linear in ratio-versus-ratio space, then  measurements  perpendicular  to 

that  trend will be  largely  independent of that  variation. This does not  mean  that  trends  for  other  materials 

will be  perpendicular  to the trend  for  vegetation,  nor  that  they  need  to  be  perpendicular in order to be 

measured  independent of vegetation. 

Fraser (1991) attempted to separate vegetation  and iron concentrations in TM ratios 4/1 and 3/1 using 

principal  components. He noted  that if the  data  variance is dominated by the  vegetation, PC1 (the first 

principal  component) will follow  the  vegetation  trend  and PC2 will measure iron concentration,  whereas if 

the  data  variance is dominated by the iron  concentration, PC1 will follow the  iron  trend  and PC2 will 

measure  vegetation. This is true, but if the two trends  are  not  orthogonal  (and  they are most  likely not), 

then  how does  one  use  principal  components to isolate  iron  concentrations if iron  dominates  image 

variance? In that case, PC1 will follow  the iron trend, but will not  be  orthogonal  to  (and will therefore not be 
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invariable with) vegetation. And what  does  one  do if neither  material  dominates  image  variance?  The 

principal  components  may be orthogonal  to  neither  data  trend  and will isolate  nothing. 

The  key  to  removing  the  effects of vegetation  from  band  ratios is to  identify  the  vegetation  trend  and 

(assuming it is linear)  re-measure  the  data  perpendicular to it. I f  the  trends of other  materials  are 

orthogonal  to  the  vegetation  trend,  great. But if not,  then  the  method still works.  The  variance of those 

materials  gets  re-scaled by the  cosine of the  deviation  from  the  orthogonal.  Since  ratios are  unitless 

quantities,  that  re-scaling is largely  irrelevant,  except in relation to how the  data  and  ratios  have  been 

quantized  previously  (and  other  data  noise issues). 

In de-vegetating  bands  instead of ratios,  we  again  use TM ratio 4/3 to measure  vegetative  effects  on 

spectral  data.  However,  there is no  linear  vegetation  trend in band-versus-ratio space, and the units of 

band  data  (radiance)  do  not  match  those of  band  ratios  (unitless). Thus our approach is to create  (or 

“force”) a vegetation  trend  that is orthogonal  to  the  band  axis.  The  band  axis will then,  conversely,  be 

orthogonal  to  the  vegetation  trend,  which  meets  our  conceptual  objective. 

Contrast  Stretching  and  Color  Balancing 

As seec in our  examples,  forced  invariance  can  be highly effective in spectral  unmixing.  Pixels  that 

have  both  lithologic  and  vegetative  information  can  be  refined  to  show  only  the  lithologic  information, 

allowing us to “see through”  the  forest. But what  happens to pixels  that  are fully vegetated? I f  the  forest is 

“removed”  and  that’s  all  there  was,  then  what will those  pixels look like? 

Remember  that  image  features  are  seen as contrasts  (variable  greys  or  colors).  Vegetation 

suppression by forced  invariance  selectively  removes  the  contrast  between  vegetation  and  other  image 

features.  The  result is that areas with dense vegetation  tend  toward  neutral  (and  may  be  noisy  because 

most of the  radiometric  signal is suppressed). By “neutral” we  mean  that  they will tend to take  on  the 

average DN value in each  band  (the  “target”  value  used in our procedure)  and  that in a three-band  display 
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they will tend toward  the  overall  color of the  refined scene. Topographic  shading will remain, as will any 

image  features  (vegetative,  lithologic,  or  otherwise)  that  are  unrelated to, or  not fully characterized by, the 

vegetation  index. 

By removing  obstructive  vegetative  patterns,  especially  where  they  dominate scene variance,  non- 

vegetative  features  more fully benefit  from  image  contrast  stretching. This is somewhat  analogous  to 

spatial  filtering.  Subtle  detail is often  obscure in scenes having  bimodal,  higher  variance  regional 

contrasts.  High-pass  filtering suppresses the  regional  contrasts so that  image  contrast  stretching is 

beneficially  applied  only to the detail.  Forced  iwariance  can  work  similarly,  except  instead of suppressing 

certain  spatial  frequencies, it suppresses certain  image  features.  The  features  that  remain  then benefit 

from  contrast  stretching  that is unencumbered by scene variance  unrelated  to the  features of interest. 

Likewise,  vegetation  suppression  via  forced  invariance  allows  color  balancing  to  become 

unencumbered by scene variance  that is unrelated to the  features of interest. Scenes that  depict 

widespread  vegetation in green  often  depict  everything else in magenta  (the  chromatic  complement of 

green)  because  the vegetation-versus-everything-else contrast is great  and  statistically  dominant. By 

suppressing  the  vegetation  pattern,  the  remaining  image  features will spread  across  the  chromatic  gamut 

when  all  display  channels are  contrast  stretched.  The  result is greatly  improved  discriminability of the 

features of interest. 

CONCLUSIONS 

Forced  invariance is a means of enhancing  multispectral  remotely sensed imagery  for  lithologic 

interpretation by suppressing  the  expression of the  overlying  vegetation  cover. It is based on the 

fundamental  concept  that  features must have  contrast in order  to  be  seen in an  image.  Vegetation  can  be 

forced  to  disappear from a  scene by selectively subduing its  contrast. 



24 

As demonstrated,  the  method is particularly  effective  for  imagery of areas of open  canopy  forest  (and 

little  understory)  because a significantly  strong  lithologic  signal will remain  after  the  vegetation  signal is 

suppressed. In areas of closed  canopy, we find that  the  method  can still be  beneficial because  vegetation 

is typically a statistical  spectral  outlier  that  interferes with image  contrast  stretching  and  color  balancing. By 

neutralizing  image  contrast  related  to  vegetation  abundance,  lithologic  discrimination is maximized. 

The  forced  invariance  method  should  be  applicable  to  the  suppression of any  image  feature  for  which 

an  index  image  can  be  generated.  Snow is spectrally  distinct,  and  we  have  successfully suppressed its 

exp:ession in Landsat TM imagery by methods  identical  to  those  described  here by using band  ratio 315 

as a snow index. Index  images  derived  from higher dimensional  spectral  data sets and  perhaps  even  non- 

spectral  data sets may  open new opportunities  for the forced  invariance  approach to image  information 

enhancement. 
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Figure 1. Index  map  derived  from  Landsat  TM  band 4 merged 

with  shaded  relief  from  a  USGS  30m  DEM.  This  scene  matches 

that  of  the  band  ratio  images  in  Figure 3. Total  scene  area  is 52 x 68 

km. Town  of Rachel,  State  Highway  375,  playas (P), field  view 

site  shown  in  Figure 2 (V), and  north  arrow  are  indicated.  Black 

rectangle  indicates  subscene  cropped  and  rotated  for  enlarged  view 

of  band  imagery  in  Figure 3. Mountains  include  the  Timpahute 

(upper  left),  Groom  (upper  right-central),  and  Belted  (lower  right- 

central)  Ranges. 



Figure 2. Field  view  in  the  Timpahute  Mountains  showing  open  canopy  Juniper-Pinyon 

woodland.  Other  ground  cover  is  minimal,  except  for  snow,  which  was  not  present  during 

Landsat  image  acquisition.  View  southeast.  Vehicle  at  left-center  provides  scale. 



Figure 3. Image  pairs  before  and  after  de-vegetation  processing. (A) Band  ratios 3/1,5/4, and 

5/7 in blue,  green,  and  red,  respectively,  achromatically  modulated by band 4. (A) Scene  de- 

vegetated  via ratio processing.  (B)  Bands l, 4, and 7 in  blue,  green,  and red, respectively. (B') 

Scene  de-vegetated  via  band  processing,  with  saturation  enhanced.  Band  scene is enlarged  upper- 

left  part of ratio  scene, as indicated  in  Figure 1, and is rotated  clockwise. 





Figure 4. Ratio-versus-index  plots  with  logarithmic  scaling.  Best-fit  lines  exclude  data  with TM 

ratio 4/3 (vegetation  index)  values of 1.185 and  lower.  Arrows  indicate  data  re-measurement 

direction  orthogonal to the  vegetation  trend.  See  text for explanation of data  patterns. 



Figure 5. Band-versus-index  plots.  Top:  Raw  band  data  plotted  against  TM  ratio 413 

(vegetation  index).  Smoothed  best-fit  lines  exclude  playa  pixels  (bright  with  low  index  values,  at 

upper  left)  and  alfalfa  fields  (bright  trend  with  high  index  values,  at  upper  right).  Bottom:  Same 

data  after  path  radiance  adjustments  and  multiplicative  scaling of each  index  column  to  flatten  best- 

fit  line at  a  constant  value  of 64.  


